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DELETION OF PRINCIPAL COMPONENTS IN REGRESSION

R. F. Gunst and J. T. Webster
Department of Statistics

Southern Methodist University
Dallas , Texas 75275, U. S. A.

,qFo,s,e- 75~~~L~~7/
SUMMARY

Two techniques generally advocated for the deletion of principal corn-

ponents in regression analysis are: Ci) delete components associated with

small latent roots of X ’X, and (ii) delete components following nonrejection

of a statistical test of the significance of the components. The estimator

corresponding to procedure Ci) is referred to as a restricted least squares

V 
estimator and that associated with (ii) is called a preliminary test esti-

mator . Properties of these estimators are examined in this paper with

special attention to the effects of multicollinearities on the preliminary 
V

test estimator. The restricted estimator is recozr~~nded for use unless in-

ferences on the noncentrality parameter of the preliminary test clearly

indicate that the test will have adequate power. 
V

1. INTRODUCTION 
V

Principal Component Regression (PCR) has long been employed in con-

junction with tests of hypotheses of the components. This is advocated as

a means of determining whether the components have predictive value. Massy

(1965), Lott (1973), and others have proposed such tests. Recently, in the

comparison of mean squared error properties of biased regression estimators,

the PCR estimator has been used aln~st exclusively following a preliminary

KEYWORDS : Multicollinearity, Principal Component Regression, Biased Estimation
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test of the predictivity of the components. In the simulation comparisons of

Lawless and Wang (1976) and Denpster , Schatzoff , and Wermuth (1977) , for ex-

ample , the PCR estimators investigated all used preliminary tests. The uni-

formly poor per formance of these PCR estimators led the authors to conclude

that other biased estimators (notably ridge regression) should be preferred

to the PCR estimator, particularly when the predictor variables are multi—

collinear.

Gunst and Mason (1977) , on the other hand, report that a PCR estimator

for which the predictivity of the components was assessed solely on the basis

of whether the component was associated with a strong inulticollinearity

an~ ng the predictor variables outperformed the other biased estimators

(including one ridge-type) with which it was compared. The authors suggested

that the discrepancy in the performance of the PCR estimator in this and

the previous investigations might be attributed to the instability of F

statistics typically used in assessing the predictive merit of the components ,

an instability pointed out by Mansfield (1975).

This article addresses the question of whether a preliminary test of the

predictivity of components in PCR should be attempted using the standard F

statistics generally advocated for that purpose. The work of Bock , Yancy,

and Judge (1973) on preliminary test estimation is central to this discussion

since it provides the mean squared error (risk function) for the PCR estimator

based on preliminary tests of the predictivity of the components.

2. PRELIMINARY TEST ESTIMATION

We employ the standardized linear regression n~ del

V

. 

. Y B 0~~ + X 8 + s , (2.1)

where Y is an (nxl ) vector of observable response variables, 1 is an (nxl)
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vector of ones, X = (X
1
, X

2
.. . ,X ]  is an (nxp) full-column-rank matrix

of nonstochastic predictor variables that are standardized so that 1~~~ — 0

and ~~ X . = 1 for j — l , 2 , ... , p, Bo and ~~
‘ = (B i t B2, ..., 8 )  are unknown

constants, and c is an (mci) vector of unobservable random error terms with
2e~ ’~NID (0~a ) .  Denote the latent roots and corresponding latent vectors of

X ’X by £
~ ~~. 

L 2 > ... > L~, and ‘l’ !2 ’ .. ., V , respectively. Also , let

L =diag 
~~l

’ £2 9 ..., £ ) and V = 

~~l’ 
!2’ •. .‘

The least squares estimator of 8 is

—l8 =  (X ’X ) X’Y = E £ C .Vj i  (2 .2 )
j=l ~

where c~ = !]
XY . One measure of the adequacy of (2.2) as an estimator of ~

the (total) mean squared error of B: 
- 

- - —

inse(S) = E { ( B — 8 ) ’  (8— ~ ) }

2 —l 2~~~~ i= a tr(X’X) = a E £ . , ( 2 .3)
j=i 3

where tr(A) denotes the trace of the matrix A. A drawback of least squares

estimation of 8 is that when the predictor variables are inulticollinear (2.3)

can be extremely large . Multicollinearities are characterized as linear

combinations of the columns of X that are nearly zero (see , e.g. Mason et al.

( 1975)) . If the columns of X are multicollinear, one or more of the latent

roots of X ’X are very close to zero , resulting in one or more terms of (2.3 )

being extremely large .

Biased estimators of B have been developed with the intention of reducing

the mean squared errors of the resulting estimators. Since the magnitude of

~nse(B)- is for the nest part controlled by the last few terms of (2.3) (i.e.

by the latent roots of X’ X that are closest to zero) , one strategy for developing

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a biased estimator of B is to construct one that eliminates terms in (2 .2 )

corresponding to small values of L . . The resulting estimator is a principal

component estimator of B.

To derive a PCR estimator of 8, rewrite (2.1) as

Y = B ~~~ + W 1 + c, (2 .4)

where W = XV, W = 
~~-1’ ~ 2 ’ ~~~ W ]  with W = XV , y~ = V’B, and 11 

~y1
,y
2
, .. .,

y )  with y .  = y~8. Note that the least squares estimator of 
~ 

is

y = L
1
W’Y;

i.e., y.= £.
1W’Y and ‘y.”~NID(y.,L .

1
a
2). The W . in (2.4) are referred to as

:3 3~~~ — 3 3 3
the principal components of X. PCR deletes some of the components from (2 .4 )

and estimates the coefficients of the remaining components by least squares.

Let y denote an estimator of i for which some coefficients have been set

to zero (note that this equivalent to deleting the corresponding components

• from (2.4)) and the remaining ones estimated by least squares. The associated

PCR estimator of B is then 8 = V~’.

Basically two procedures have been recommended in the literature for

selecting components to delete in PCR. Massy (1965) sunixnarizes these as:

Ci) delete components associated with the smallest latent roots of X’X , or

(ii) delete components that are unimportant as predictors of the response

variable. •

Suppose first that the components associated with the s smallest latent

roots of x’x are to be deleted from (2.4). The PCR estimator of 
~ 
becomes

~
‘1’ ~

‘2’ ~~
“‘ 

~
‘p—s’ ~~ . . .,  0),

and the PCR estimator of ~ is
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(2 .5)

where V = [V :V 1, V , — [V ,V , ... , V 1, V — (V , V ... , V ] ,
L s L —l —2 —p-s s —p-s+l —p—s +2 , —

~~~

and x~, — 
~~~~~~ ~ 2 ’ ~~~~~~

An equivalent procedure for deriving the PCR estimator (2.5) is to estimate

B by least squares subject to the restriction V~~ = 0. Thus, this PCR estimator

is a restricted least squares estimator. It is important to note that the re-

strictions are determined solely by an examination of X ’X and its latent roots

V and latent vectors and not as a result of inferences made using the response

variable . Hence the restrictions are nonstochastic . V

The mean squared error of 8 is

znse(8) = E {(8— 8) ‘ ( 0 — 8) )

= a
2
~~~

S £ 1 
+ B ’V V ’8. (2.6 )) ] .  3 S 5

Comparison of (2.3 ) and (2.6 ) reveals that the restricted least squares estimator

of B does indeed eliminate the largest terms of (2.3) but at the cost of intro—

2
ducing a term due to bias : B’ V V ’B= E (V~8) . If the restrictions V’B=O

S ~ j =p—s+l ~~ S —

are true there is no bias term in (2.6) ; otherwise, the bias is nonzero and

could potentially be larger than the terms eliminated from (2 .3 )  by imposing

the restrictions.

Next suppose Massy’s (1965) second recommendation is adopted. In par-

ticular, suppose one wishes to delete the jth principal component if a

test of the ~vpothesis v~~Y~~”O is not rejected . For the noment, consider

testing jointly ;V~~—O and using the least squares estimator of 8, (2 .2 ) ,

if this hypothesis is rejected . U the hypothesis is not rejected , the

restricted least squares estimator (2 .5 )  is employed. This estimator,

V 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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referred to as a preliminary test estimator , is also a PCR estimator.

Often the hypothesis V’B’~O is tested by calculating

F
H 

= 8’V (V’(X’X) 1V ) 1V’~~ SMSE, (2.7)

where B is the least squares estimator of 8, (2.2), and MSE is the unbiased

least squares estimator of a
2
, MSE — Y’{I - n 1

1 1’ — X(X’X)~~ X’)Y/(n-p—l) . 
V

If , for a preselected value of a , FR > c, where

a = P r {p > c} (2.8)

and F is a central F random variable with degrees of freedom s and (n-p-i) ,

the hypothesis V~~ = 0 is rej ected and B is used to estimate B. If F~ < c ,

B is the estimator of 8. 
V

Bock et al. (1973) concisely represent the preliminary test estimator as

1= 
~~~~~~~~~~~~~ 

I (c o D ) (FH
) .~.t 

( 2.9)

where 1(a b )  (.& = 1 if a u < b and equals 0 otherwise. From eg. (3.7) of

Bock et a].. (1973) , in the notation of this paper ,

mseC$) =
V 

2 p~~~~l 2  p -i 
V

= a  z t . —a p~ (A) E L~ +C2p
1
(A)—p

2
(A))~~’V5

V~~, (2.10)
-: j=l j=p-s+l

where

pr{F’(s,n—p—l,X) < cs/(s+2j)}, (2.11)

and F’ (s,n-p-1, A) is a noncentral F random variable with s and (n-p-l) degrees

of freedom and noncentrality parameter A.

In the remaining sections of this paper we wish to compare the least

squares (8) , restricted least squares ( 8) , and preliminary test ( B)  estimators

of B with specific attention focused on multicollinear predictor variables. 
V

By examining the characteristics of preliminary test estimator in particular, 
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the apparent conflicts between the two PCR estimators maybe more clearly

understood.

3. POWER

An appreciation of the effects of multicollinearities on the power of a

preliminary test is important to the consideration of the relative merits of

the three estimators defined in the previous section. For simplicity let us

consider a test of H : V ’B  = 0 vs H : V ’8  ~ 0, where V is the latent vector
0 —p-- a —p— —p

of x’X corresponding to the smallest latent root, £ .  In performing this

test we are attempting to determine whether the pth principal component of

X is important in predicting the response variable, since y = Vt 8. If Fp — p— H

(eg. (2.7)) is used as the teststatistic, resulting in the uniformly most

powerful test of H :  y = 0 , the noncentrality parameter of FH is

A = £ (V’ 8) 2/2a2 . (3. 1)p — p —

As a function of L , observe that A (and hence the power of the test)

decreases as the multicollinearity indicated by V becomes stronger (for
V 

fixed V , 8, and a2) since P. is approaching zero in (3.1) . So the stronger

the multicollinearity, the less the power of the test; yet FH is often pro-

posed for use when the predictor variables are extremely multicollinear.

Qualitatively, this statistic appears to be a poor choice for assessing the

predictivity of the components.

To illustrate the dramatic effects of multicollinearity on the power

V 
of the test quantitatively, Figure 1 exh ibits power curves associated with

as a function of X/L = (vp’ 8)
2/2a2 for a regression model with error

degrees of freedom v = n-p—l=lO and two selections of £ :l.O and 0.01.

:‘. Since X is assumed standardized, £=l implies that X is an orthogonal

matrix and no multicollinearities exist in the data.

(Insert Figure 1) 

-~~~~~~~~~ _ _  _ _ _ _ _ _ _
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For fixed A/t (recall, Alt = (V1 B)
2
/2a

2
) Figure 1 reveals that the

power drops precipitously when £ decreases from 1.0 to .01. Thus with

strongly multicollinear data there is a much greater likelihood that H0:y~ ’ ~ =0

will not be rejected than if the predictor variables were not multicollinear.

V This is especially true for small a - levels and the results generalize to

simultaneous tests of the hypotheses H0:V’ B — 0.

In a more general setting than that considered in this paper, Toro -

Vizcarrondo and Wallace (1968) studied preliminary testing from a slightly

different viewpoint . Denote a least squares estimator of B subject to the

general restrictions KB in by ~~~~~~. Toro - Viscarrondo and Wallace (1968)

define ~~ to be “better” than the least squares estimator B if for every

vector d , F

inse (d ’ ~~ ) < mae (a’ 8). (3 .2 )

Translating tn~.s ciscussion to the problem b’ ’ ng ~nvestigated in this paper ,

j  (the principal component estimator with y =  0) is “better” than B if for

every d (3.2) holds (replacing 8R with 8 ) .  Toro-Vizcarrondo and Wallace also

V showed that

mse Cd’ 8) < mse(d’ 8) for all d = A < 1/2,

where A is the noncentrality parameter of FH (eg . (2 .7 ) . They then proved

that a uniformly most powerful test of H0 :A < 1/2 vs Ha:X > 1/2 is to reject

H0 if FH is greater than the upper 100(l- ) %  critical point of a noncentral F

distribution with noncentrality parameter 1/2 , i.e. reject H0 if FR > F~ (1,V;Aw½)

and do not reject otherwise.

Since the noncentrality parameter of this test is identical to (3.1),

the effects of multicollinear predictor variableswillbe the same as those of

the more traditional test of comparing 
~H with a central F critical point. 

-
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Figure 2 displays power curves for the test proposed by Toro - Vizcarrondo

- — and Wallace for the same model parameters as in Figure 1. The power curves

are slightly lower in Figure 2 than those in Figure 1 and the debilitating in-

fluence of strong multicollinearities on the power is again clearly evident.

(Insert Figure 2]

One conclusion that is readily apparent from Figures 1 and 2 is that

A/L
w 

= (y
r
’ B)2/2a2 must be very large before reasonable power will be achieved

with either of the above tests when the data contains strong multicollinearities.

Thus when the predictor variables are strongly inulticollinear, the preliminary

test estimator will tend to reduce to the restricted least squares estimator

unless A/P. is very large; however, even when Alt is small or moderate in

- 
- magnitude, the preliminary test rejects H0:~~ B = 0 frequently enough to

make it more advantageous to use the restricted least squares estimator for

these values of A/P.. , as we shall now see .

V 4. MEAN SQUARED ERRORS

• The mean squared errors of the least squares (LS), restricted least

V squares (R) , and preliminary test (PT) estimators were given in equations (2.3),

(2.6), and (2.10), respectively . Graphs of the mean squared errors as a

function of AlL are exhibited in Figures 3 and 4. In computing the mean

squared errors, three p=S, n—p-l=lO X matrices were studied, each defined

by the following sets of latent roots:

Ci) Li = £2 = £3 = £4 = £5 = 1.00 (orthogonal X matrix)

(ii) £
1 

= 2.90 , £ 2 = 1.00 , £ 3 = 0.70 , £4 = 0.30 , £~ = 0.10 (moderate

multicollinearity)

V 
(lii) L~ =2.99 , £2 — 1.00 , £3 =0 .70 , £4 = 0.30, = 0.01 (strong multi— 

V

collinearity).

In all cases a
2 

= 1.0 was used.

_ _
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Figure 3 displays the mean squared error curves for models Ci) and (iii)

over the same range of A/t as in Figures 1 and 2. Consider first the ortho-

gonal data, the lower three curves in Figure 3. Unless A/t is very small

(less than 0.5 for restricted least squares and about 0.4 for the preliminary

test estimator), least squares has a smaller mean squared error than either

principal component estimator, although the difference in mean squared errors

is never very great between LS and PT. If A/P. is not extremely small, more-

over, the restricted least squares estimator is clearly inferior to the least
1~ squares and preliminary test estimators. But our major concern here is with

multicollinear data . V

II 
[Insert Figure 31

The upper three curves of Figure 3 display the mean squared errors for

the strong inulticollinearity (9. = .01). The relationships among the mean

squared errors is completely changed from the orthogonal data. Over th~

entire range of Alt in Figure 3, the restricted least squares estimator has a V

• substantially smaller mean squared error than least squares and the preliminary

V 
test estimator. Further , the mean squared error for PT is much smaller than

that for least squares. From Figures 1 and 2 one can again observe that the

power of the test of either X=O (Figure 1 )or A<l/2 (Fi gure 2) is low , account-

ing for the smaller mean squared error for the preliminary test estimator than

least squares. Yet the hypotheses are rejected frequently enough to force the

mean squared error for the preliminary test estimator to be much larger than

that of the restricted least squares estimator over this range of A/P. . In

fact A/P. must be quite large before the mean squared error of the restricted

least squares estimator will exceed that of least squares or the preliminary 
V

test estimator. This is illustrated in Figure 4.

(Insert Figure 4]
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Model configurations (ii) and (iii) are plotted in Figure 4 (note that

both curves for the restricted estimator are so close to one another that

only one has been graphed). The effects of the strength of the multicollinearities

can be appreciated by comparing the curves as the multicollinearity is strength-

ened (e.g. as £ changes form .10 to .01). In general, the stronger the

multicollinearity the wider the range of A/t for which the restricted least

squares estimator is superior (in a mean squared error sense) to the other

two estimators. Conversely, if L is not small the restricted least squares

estimator can be greatly inferior to the least squares and preliminary test

estimators. 
V

With strongly multicollinear data , therefore, the restricted least

squares estimator - the principal component estimator with components associated

with small latent roots deleted - is preferable to least squares or a pre—

luminary test estimator unless A/t is extremely large. From Figures 1 and

2 note that large values of A/t are also required to insure adequate power

for the test of predictivity of multicollinearities. Unfortunately, A/t

is unknown . Whether sample data can provide useful information on the magnitude

of Alt is the subject of the next section.

5. PRACTICAL CONSIDERATIONS

Idea] ly, we should not use the data to indicate which regression estimator

should be employed in a specific analysis. Since using a preliminary test to

decide whether to employ least squares or a restricted least squares estimator

actually produces an estimator that is a mixture of the two, so too if one

must estimate A/P.. before deciding whether to employ LS, R, or PT, the actual

estimator utilized is also a mixture of LS and R. So what is one to do?

In the absence of exact knowledge regarding the value of X/t~~, we still

prefer to allow the data to suggest an appropriate estimator despite the 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __
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mixture problems, but only to a limited extent. If inferences on A/t clearly

— suggest that the power of the preliminary test is good, we employ the pre-

luminary test estimator. Otherwise, we prefer the restricted least squares

estimator . An example will illustrate our application of the results of

Secti ns 3 and 4. 
V

The pitprop data of Jeffers (1967) concerns the construction of a pre-

diction equation for the maximum compressive strength of timbers from infor—

mation provided by thirteen measurements on each timber (such as length,

diameter, and specific gravity). The data collected on 180 timbers indicates

that there are three strong multicollinearities among the predictor variables

as evidenced by three small latent roots of X’ X: .0387, .0414, and .0506

(the next smallest root is .1908).

Scaled mean squared errors (inse/a 2 ) of the least squares, restricted

least squares, and preliminary test estimators are given in Figure 5. For

- V simplicity the scaled mean squared errors of the two principal component

estimators are drawn as though a single small latent root of magnitude .05
V 

is being deleted (all three small latent roots of the pitprop data are close

to .05). We are going to examine the deletion of each of the three components

separately although we could consider them two at a time or all three simul-

taneously with only minor modifications of the following arguments.

(Insert Figure 5]

As mentioned earlier , FR is the uniformly most powerful test of V~~.8 — 0.

The previous sections have shown that it is also effective in selecting whether

to use least squares or restricted least squares provided that the noncentrality

parameter is not too small. Rather than blindly using the statistic, we

advocate using the data to obtain information on the noncentrality parameter .

Point estimates of A/L~~ i—li, 12, and 13, using A~ /L
3 

= (y4 8)
2
/20

2

with least squares estimates of B and ~
2
, are

V V~~~~ V V V , 

— 

- V - _~~~~~~~~ _ _ — V ___ .  _. _ ___________________________V . _-_ .  ~~~~~~~~
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— 4.13, A12/t12 — 335.21, and A13/t 13 — 0.001.

Unfortunately, the estimators used to obtain these values have extresiely large

variances due to the small magnitudes of the latent roots (cf. Silvey (1969)).

Thus the point estimates cannot be trusted and interval estimates will tend

to be wide. The interval estimates nevertheless provide interesting imp].i—

cations for this data set.

Two—sided 95% confidence intervals were computed for A ./t~~ j —ll—1 3,

using the noncentral F distribution associated with FR
. For A11/t11 the

conf idence interval is

0 <A
1~
/L
11 

< 66.67. 
-

As expected, this interval is quite wide and includes not only the range of

A/t included in Figure 5 but it also extends beyond that range. For the reasons

expressed in the two previous sections for being wary of the preliminary test

estimator , we prefer to use the restricted estimator when there is doubt as

• to which is more appropriate. So we advocate using the restricted estimator

to delete the principal component associated with tll • The choice of an

estimator is more clear cut for the other two components.

The 95% confidence interval for A
12
/L
12 

is

125.41 < A
12
/t
12 

< 643.53.

Again the conf idence interval is wide; however , the lower bound is about an

order of magnitude larger than the preferential range for the restricted

estimator in Figure 5. The power of F
R 

is good over this interval (greater

than .8) so the preliminary test is recommended. With F
R 

27.80, the pre—

luminary test indicates that the component associated with P.12 should be

retained in the estimator.

Finally, consider a confidence interval for A
13

/t
13
. The actual value

of the point estimate of this parameter is 0.000986. Using the central F

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -VV 
~~~~~~~~~~~~~~~~~ a
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distribution associated with the observed value of F
R falls in the lower

1% of the population for A 0 .  Thus a 95% two-sided confidence interval for

cannot be calculated. We can, therefore, conclude with a high degree

of certitude that the restricted least squares estimator should be employed

V 
to delete this component.

In summary, confidence intervals on A
j/t) clearly indicate that the

preliminary test and restricted least squares estimators should be utilized

on the last two principal components, respectively. Concern over the re-

duced power of the preliminary test estimator when testing components

associated with multicollinearities lead us to recommend employing the

V 

restricted estimator on the principal component associated with £11. The

conclusion is that the components associated with £11 and £13 should be

deleted but the preliminary test forces us to retain the component

corresponding to £
12•

This use of confidence intervals to obtain information on A/L
i 

is actually

V 
equivalent to simply performing a preliminary test with a very small signifi- V

cance level. By insisting that the confidence intervals provide relative

certitude that A/P.~ is large enough to enable the preliminary test to have

adequate power, we are in effect insisting that FR 
be extremely far out in

the upper tail of the associated central F distribution. What we have

I attempted to convey through this example, however, is our rationale for de-

manding such a small a level . The previous sections have presented the basis

- 
. for our recommendation that unless one is relatively sure that A/t , is not

small the restricted least squares estimator should be preferred to the pre—

V :- luminary test estimator. The simulations referred to in the Introduction also

attest to this recommendation.
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6. CONCLUSION

— 
Motivated by discrepancies in conclusions drawn from simulations com-

paring the performance of regression estimators , this paper has examined

characteristics of the two most widely recommended principal component re-

gression estimators. The power of the preliminary test was shown to be

severely reduced by multicollinearities among the predictor variables, yet

the test is proposed to ascertain whether these same inulticollinearities

have predictive value. If the noncentrality parameter is not sufficiently

V large to dominate the small latent root associated with the multicollinearity,

not only is the power poor but the mean squared error of the preliminary

test estimator is also larger than the restricted least squares estimator.

The deliterious effects of multicollinearities on the preliminary test

estimator lead one to infer that it should not routinely be used. Our pre-

ference is to use the restricted estimator unless the data yields clear

evidence that the power of the preliminary test will be sufficiently large

to render good inferences.
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FIC~JRE CAPTIONS

Figure 1. Power Curves For Testing !~~—O (v—lO).

Figure 2. Power Curves For Testing AC½ (v—l0).

Figure 3. Mean Squared Errors For Least Squares (LS) , Preliminary Test
Test (PT) , And Restricted Least Squares CR) Estimators.

Figure 4. Mean Squared Errors For Least Squares (LS) , Preliminary Test
(PT) , And Restricted Least Squares* CR) Estimators .

Figure 5. Scaled Mean Squared Errors , Pitprop Data With One Component
(L— .05) Deleted .
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